New review of the use of Artificial Intelligence in treating and diagnosing brain disease

Italian scientists have examined 2,696 research papers on the use of Artificial Intelligence in treating and diagnosing brain disease to determine the value of advanced algorithms in a clinical setting.

Artificial Intelligence (AI) is praised for its ability to solve problems humans cannot, thanks to novel computing architectures that process large amounts of complex data quickly. As a result, AI methods, such as machine learning, computer vision, and neural networks, are applied to some of the most difficult problems in science and society. A consortium of Italian researchers conducted a systematic literature review to understand the use of AI for brain disease.

The range of AI technologies available for dealing with brain disease is growing fast, and exciting new methods are being applied to brain problems as computer scientists gain a deeper understanding of the capabilities of advanced algorithms.

In a paper published this week in APL Bioengineering, the researchers report that their search yielded 2,696 results, and they narrowed their focus to the top 154 most cited papers and took a closer look. Their qualitative review sheds light on the most interesting corners of AI development. For example, a generative adversarial network was used to synthetically create an aged brain in order to see how disease advances over time.

Author Alice Segato said: “The use of AI techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain. Especially in recent years, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms.”

The analysis covers eight paradigms of brain care, examining AI methods used to process information about structure and connectivity characteristics of the brain and in assessing surgical candidacy, identifying problem areas, predicting disease trajectory, and for intraoperative assistance. Image data used to study brain disease, including 3D data, such as magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, and computed tomography imaging, can be analysed using computer vision AI techniques.

Segato said: “If humans are to accept algorithmic prescriptions or diagnosis, they need to trust them. Researchers’ efforts are leading to the creation of increasingly sophisticated and interpretable algorithms, which could favour a more intensive use of ‘intelligent’ technologies in practical clinical contexts.”

Subscribe to our newsletter


Please enter your comment!
Please enter your name here

Featured Topics

Partner News

Latest eBooks

Latest Partners

Similar Articles

More from Innovation News Network